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ABSTRACT

Various types of inertial modes have been observed and identified on the Sun, including the equatorial Rossby modes, critical-latitude
modes, and high-latitude modes. Recent observations further report a detection of equatorially-antisymmetric radial vorticity modes
which propagate in a retrograde direction about three times faster than those of the equatorial Rossby modes when seen in the
corotating frame with the Sun. Here, we study the properties of these equatorially-antisymmetric vorticity modes using a realistic
linear model of the Sun’s convection zone. We find that they are essentially non-toroidal, involving a substantial radial flow at the
equator. Thus, the background density stratification plays a critical role in determining their dispersion relation. The solar differential
rotation is also found to have a significant impact by introducing the viscous critical layers and confining the modes near the base of the
convection zone. Furthermore, we find that their propagation frequencies are strikingly sensitive to the background superadiabaticity δ
because the buoyancy force acts as an additional restoring force for these non-toroidal modes. The observed frequencies are compatible
with the linear model only when the bulk of the convection zone is weakly subadiabatic (−5 × 10−7 ≲ δ ≲ −2.5 × 10−7). Our result
is consistent with but tighter than the constraint independently derived in a previous study (δ < 2 × 10−7) employing the high-latitude
inertial mode. It is implied that, below the strongly superadiabatic near-surface layer, the bulk of the Sun’s convection zone might be
much closer to adiabatic than typically assumed and may even be weakly subadiabatic.
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1. Introduction

Inertial modes are global-scale low-frequency modes of oscilla-
tion in a rotating fluid whose restoring force is the Coriolis force
(e.g., Greenspan et al. 1968). Recently, various kinds of inertial
modes have been observed on the Sun. These include the equato-
rial Rossby modes (Löptien et al. 2018; Liang et al. 2019; Prox-
auf et al. 2020; Mandal & Hanasoge 2020; Hathaway & Upton
2021), the critical-latitude modes, and the high-latitude modes
(Gizon et al. 2021). All of these modes propagate in a retrograde
direction (opposite to solar rotation) when seen from the Car-
rington rotation frame. It is expected that these inertial modes
can be used to probe the interior of the Sun (e.g., Goddard et al.
2020; Gizon et al. 2021; Bekki et al. 2022b). In particular, us-
ing the baroclinically-unstable m = 1 high-latitude mode, Gizon
et al. (2021) derived the observational constraint of the mean su-
peradiabaticity δ, one of the most important unknown parameters
in the Sun’s convection zone. They deduced δ < 2 × 10−7, im-
plying that the Sun’s convection zone is closer to adiabatic than
typically assumed.

Recently, Hanson et al. (2022, hereafter HHS22) have re-
ported to detect another family of modes near the surface of
the Sun, i.e., retrograde-propagating modes of equatorially an-
tisymmetric radial vorticity ζr. They can be most clearly seen
in the l = m + 1 component of the radial vorticity power spec-
trum, where l is the spherical harmonic degree and m is the az-
imuthal order. HHS22 reported that these modes propagate in a
retrograde direction about three times faster than the equatorial
Rossby modes with the same azimuthal order m, which cannot

be explained by the classical Rossby modes. In this paper, we
call them HHS22 modes hereafter.

A possible identification of the HHS22 modes was first pro-
vided by Triana et al. (2022, hereafter TGBR22) using a linear
model of rotating fluid in a spherical shell. They are identified
as a particular class of non-toroidal inertial modes which in-
volve substantial radial motions in the middle convection zone.
The computed linear dispersion relation of the HHS22 modes
shows a good agreement with their observed frequencies. How-
ever, the linear model of TGBR22 was highly simplified, e.g., the
model assumes an incompressible (uniform density) fluid and
uniformly-rotating convection zone, which are not appropriate
in the Sun.

A similar mode identification was later reported by Bhat-
tacharya & Hanasoge (2023, hereafter BH23) in which the solar-
like background stratification was taken into account using the
anelastic approximation. However, the latitudinal differential ro-
tation of the Sun was still omitted in their model for simplicity,
which is known to have a substantial impact on the properties
of inertial modes (e.g., Baruteau & Rieutord 2013; Gizon et al.
2021; Bekki et al. 2022b; Fournier et al. 2022; Philidet & Gi-
zon 2023; Bhattacharya et al. 2023). BH23 found that the com-
puted frequencies of the HHS22 modes are lower than the ob-
served ones by about 100 nHz, in contrast to the match found by
TGBR22. It is necessary to understand the origin of this discrep-
ancy and to investigate the missing physics to properly reproduce
the observed features of the HHS22 modes.

In this paper, we study the properties of the HHS22 modes
using a more realistic linear model of the Sun’s convection zone
(Bekki et al. 2022b) which takes into account both the solar den-
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Table 1. Summary of the linear analysis model setups.

Model Stratification Differential rotation

1 ... No (incompressible) No (uniform rotation)
2 ... Yes (solar-like) No (uniform rotation)
3 ... Yes (solar-like) Yes (solar-like)

Notes. Model 1 assumes the incompressible fluid and uniform rotation,
corresponding to that of TGBR22. In model 2, the solar-like density
stratification is taken into account but the uniform rotation is still as-
sumed, which is similar to that of BH23. In model 3, we consider both
the background density stratification and the solar differential rotation
determined by global helioseismology (Larson & Schou 2018).

sity stratification and the solar differential rotation determined
by global helioseismology (Larson & Schou 2018). We will then
show that their frequencies are strongly affected by the supera-
diabaticity δ in the bulk convection zone.

Recently, the solar inertial modes are also studied using
fully-nonlinear simulations of the rotating convection. Bekki
et al. (2022a) have mostly focused on the equatorial Rossby
modes and the columnar convective (also known as thermal
Rossby) modes. Matilsky et al. (2022) have implied that the
equatorial Rossby modes might contribute to the confinement of
the solar tachocline via dynamo action in the radiative interior.
However, the HHS22 modes have never been studied yet. In Ap-
pendix of this paper, we will also show that the HHS22 modes
can be found to exist in the fully-nonlinear simulations.

The organization of the paper is as follows. In § 2, our linear
eigenmode solver is explained. The effects of the background
density stratification and the solar differential rotation on the
HHS22 modes are examined in § 3.1. The effects of turbulent
viscosity is briefly discussed in § 3.2. We then show how the
solar observations can be used to infer the superadiabaticity in
the bulk of the convection zone in § 3.3. In Appendix A, we
further report that the HHS22 modes are found to exist in the
fully-nonlinear simulations of rotating convection. The conclu-
sions are summarized in § 4.

2. Method: linear eigenmode analysis

We use the code developed by Bekki et al. (2022b), which nu-
merically solves the linear eigenvalue problem for a rotating
fluid in a spherical shell 0.71R⊙ < r < 0.985R⊙. Here, R⊙ is
the solar radius. The model is hydrodynamic, i.e., the effects of
magnetic field are ignored for simplicity. The eigenvalue equa-
tions are solved for azimuthal orders 1 ≤ m ≤ 19. To study the
HSS22 modes, we seek for the retrograde-propagating modes
(ℜ[ω] < 0) whose eigenfunctions satisfy the following criteria:

– The eigenfunction of radial velocity vr is dominantly l = m
in the middle convection zone, and has no radial node at the
equator.

– The eigenfunction of latitudinal velocity vθ is dominantly l =
m + 1 at the surface, and has no radial node at low latitudes.

– The eigenfunction of latitudinal velocity vϕ is dominantly l =
m or l = m + 2 at the surface.

When the above criteria are satisfied by multiple eigenmodes,
we select the least-damped mode (with largest growth rate ℑ[ω])
among them. For further details, see Bekki et al. (2022b, § 2).

In this paper, we first carry out three sets of linear eigen-
mode calculations with different model setups. The first setup
(model 1) consists of incompressible fluid and uniform rotation,

Fig. 1. Dispersion relation of the HHS22 modes obtained from the lin-
ear analysis for 1 ≤ m ≤ 19. Green points represent the results from
our model 1 where we assume an incompressible (constant density)
fluid and an uniform rotation. Blue points represent the results from our
model 2 where the solar background stratification is included but the
uniform rotation is still assumed. Orange points represent the results
from our model 3 where both the solar stratification and the solar differ-
ential rotation are included. Red points also show the results from model
3 but with a weakly subadiabatic bulk convection zone (δcz = −5×10−7)
and a strongly superadiabatic near-surface layer (δsf = 10−3). Lime and
cyan solid curves show the results from TGBR22 and from BH23, re-
spectively. For comparison, we also show the observed frequencies of
the HHS22 modes reported in HHS22 where the gray diamonds and
squares denote the measurements with ring-diagram analysis (RDA)
and mode-coupling analysis (MCA), respectively. All the frequencies
are measured in the Carrington frame rotating at Ω0/2π = 456 nHz.

which were assumed in the previous study of TGBR22. In the
second setup (model 2), we still assume the uniform rotation but
include the solar background density stratification, which is sim-
ilar to the numerical setup of BH23. The third setup (model 3)
finally takes into account both the realistic solar density strati-
fication and the solar differential rotation determined by global
helioseismology (Larson & Schou 2018). These are summarized
in Table 1.

3. Results

3.1. Comparison with previous studies

In this section, we compare the results from models 1–3. In all
cases, we include the spatially constant viscous diffusivity of ν =
1012 cm2 s−1. For simplicity, we assume that the background is
purely adiabatic, i.e., there is no entropy variation neither in the
radial nor the latitudinal directions.

3.1.1. Effects of density stratification

Figure 1 shows the linear dispersion relations of the HHS22
modes computed from the models 1-3, measured in the Car-
rington frame rotating at Ω0/2π = 456.0 nHz. We find that
the dispersion relation from the model 1 matches almost ex-
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Fig. 2. Meridional cuts of the eigenfunctions of the m = 10 HHS22 mode obtained from the linear analysis. The velocity, pressure, and vorticity
eigenfunctions are expressed as v(r, θ) exp [i(mϕ − ωt)], p1(r, θ) exp [i(mϕ − ωt)], and ζ(r, θ) exp [i(mϕ − ωt)], and the solutions are shown in the
meridional plane at t = 0 and ϕ = 0. The units of the colorbars are m s−1 for three velocity components, 104 dyn cm−2 for the pressure perturbation,
and 10−8 s−1 for the vorticity components. The eigenfunctions are normalized such that the maximum of vθ is 1.0 m s−1. Panels (a–c) show the
results from models 1–3, respectively. Note that the background stratification is adiabatic in all cases. In panel (c), the black solid curves show the
locations of the critical latitudes.

actly to that of TGBR22; the differences are found to be less
than 1.5%. It is confirmed that the observed frequencies of the
HHS22 modes can be nicely fitted by the dispersion relation of
our model 1 where the over-simplifying assumptions are used.
Interestingly, however, when the solar density stratification is
taken into account, the dispersion relation of the HHS22 modes
deviates from the observations: In our model 2, the frequencies
become much lower than the observed ones (by about 100 nHz
at m = 10). These frequencies are consistent with the results re-
ported in BH23 with the differences on the order of few percent.
The small discrepancy can be attributed to the differences in the
model setups such as the different radial profiles of the turbulent
diffusivities and the inclusion of the radiative interior below the
convection zone.

Figure 2 shows the meridional eigenfunctions of the HHS22
mode at m = 10. All the eigenfunctions are normalized such that
the maximum of vθ is 1.0 m s−1 at the surface, as suggested by
the observation (HHS22). Those of model 1 (Fig. 2a) agree with
the results of TGBR22 (see Fig. 4 top panels therein). As already
reported, the HHS22 modes have a radial vorticity ζr which is
north-south antisymmetric across the equator. At the equator,
it is seen that the latitudinal diverging (converging) motion at
the surface involves a substantial radial upflow (downflow) in
the middle convection zone. This clearly shows that the HHS22
modes are not toroidal at all. Therefore, their mode properties

are different from the l = m + 1 classical Rossby modes which
are quasi-toroidal (even though their surface eigenfunctions look
similar to those of l = m + 1 classical Rossby modes).

To further investigate the consequences of the non-
toroidalness, we show the eigenfunctions of z-vorticity ζz in the
rightmost panels of Fig. 2, where z denotes a direction paral-
lel to the rotational axis. It is seen that the HHS22 mode in-
volves a north-south symmetric z-vortical motion near the equa-
tor, in addition to the north-south antisymmetric r-vortical mo-
tion. We note that the amplitude of ζz is comparable to that of ζr.
This z-vortical motion invokes additional β-effects, i.e., the to-
pographic β-effect originating from the spherical curvature (e.g.,
Busse 2002) and the compressional β-effect originating from the
background density stratification (e.g., Glatzmaier et al. 2009;
Verhoeven & Stellmach 2014; Gastine et al. 2014; Bekki et al.
2022b). Outside the tangential cylinder of the Sun’s convection
zone, it is known that the compressional β-effect dominates over
the topographic β-effect (Bekki 2022, see Fig. 3.32 therein). At
the equator, the z-vorticity equation can be expressed as

∂ζz
∂t
= βcompvr + [...], with βcomp = −

2Ω0

Hρ
, (1)

where Hρ denotes the density scale height of the background,
and we only retain the term related to the compressional β-effect.
When the simplifying assumption of incompressible fluid is used
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Fig. 3. (a) Root-mean-square (RMS) amplitudes of the velocity eigenfunctions of the HHS22 modes from the linear analysis, where the average
is taken over the spherical surfaces. Dashed and solid curves show the results from model 2 (without differential rotation) and model 3 (with
differential rotation). Different colors show different azimuthal orders m. The eigenfunctions are normalized such that the maximum horizontal
velocity at r = 0.985R⊙ is 1.0 m s−1. (b) Spectra of volume-integrated kinetic energy of the HHS22 modes. The blue and red points denote those
from model 2 and 3, respectively.

in model 1, the compressional β-effect is ignored (βcomp = 0).
However, when the density stratification is included in model
2, a negative βcomp promotes a prograde propagation which acts
against the retrograde propagation of the modes (Glatzmaier &
Gilman 1981). This decreases the retrograde propagation fre-
quencies of the HHS22 modes compared to the model 1, and
consequently, the dispersion relation deviates from the obser-
vations. Our study suggests that a great agreement reported by
TGBR22 is largely due to the unrealistic assumption of incom-
pressible fluid in the Sun’s convection zone, which ignores the
compressional β-effect.

3.1.2. Effects of solar differential rotation

It is shown in Fig. 1 that the inclusion of solar differential rota-
tion changes the dispersion relation of the HHS22 modes (from
model 2 to model 3). The significant modification occurs at
higher m where the retrograde propagation frequencies become
larger than the observed values by about 50 − 80 nHz. This is a
direct consequence of the Doppler frequency shift by the differ-
ential rotation.

The eigenfunctions of the m = 10 HHS22 mode from the
model 3 are shown in Fig. 2c. It is known that the inclusion
of latitudinal differential rotation gives rise to critical latitudes
where the phase speed of the mode becomes equal to the lo-
cal differential rotation speed (Baruteau & Rieutord 2013; Gizon
et al. 2020; Bekki et al. 2022b; Fournier et al. 2022; Philidet &
Gizon 2023). The locations of the critical latitudes are denoted
by black solid curves. Compared to those from the model 2, the
mode eigenfunctions from the model 3 are distorted by the exis-
tence of critical layers.

To better see the impact of the critical layers, we show the ra-
dial profiles of the root-mean-square (RMS) velocity eigenfunc-
tions of the HHS22 modes for different azimuthal orders m in
Fig. 3a. For small azimuthal orders m (≲ 6), the radial eigenfunc-
tions from models 2 and 3 are similar: In both cases, the RMS
velocity increases with radius and peaks at the surface. However,

as m increases, the velocity eigenfunctions from the model 3 are
more and more confined into the lower convection zone, leading
to a significant deviation from those of model 2. This is because
the HHS22 modes tend to be more and more localized around the
critical layers. For sufficiently large m (≳ 10), the critical layers
exist near the base of the convection zone at the equator. Fig-
ure 3b further compares the volume-integrated kinetic energy of
the HHS22 modes between the model 2 and model 3 where the
maximum horizontal velocity amplitudes are fixed to 1.0 m s−1

at the surface in both cases. It is shown that, as a consequence
of the mode confinement near the base, the HHS22 modes have
much more kinetic energy in model 3 than in model 2. Therefore,
our study suggests that the solar differential rotation needs to be
properly taken into account in order to evaluate the dynamical
importance of the HHS22 modes in the Sun’s convection zone.
In the remaining part of the paper, we only consider the most
realistic model 3 which takes into account both the solar density
stratification and the solar differential rotation.

3.2. Dependence on turbulent viscosity

In this section, the dependence of the HHS22 modes on the tur-
bulent viscosity ν is examined. Here, we use the model 3 with
the adiabatic background, i.e., δ = 0 throughout the convec-
tion zone. Figure 4 compares the eigenfequencies of the HHS22
modes obtained for two different values of turbulent viscos-
ity, ν = 1011 and 1012 cm2 s−1. For simplicity, the viscosity
ν is assumed to be spatially constant throughout the convec-
tion zone. Although the mode linewidths are decreased by about
60 − 100 nHz with the decrease of ν, the dispersion relation of
the HHS22 modes is only marginally affected (difference of less
than 3%). Regardless of the values of turbulent viscosity used,
the discrepancies between our linear model and the observations
remain in the propagation frequencies of the HHS22 modes at
8 ≤ m ≤ 14.
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Fig. 4. (a) Propagation frequencies and (b) linewidths of the HHS22 modes obtained from the linear calculations with two different values of
turbulent viscosity ν. Blue and red points show the results with spatially uniform viscosity of ν = 1011 cm2 s−1 and for 1012 cm2 s−1, respectively.
The model 3 is used (with solar density stratification and solar differential rotation) and the background is assumed to be adiabatic (δ = 0). The
observed values reported by HHS22 are shown by gray diamonds.

3.3. Dependence on superadiabaticity δ

Next, we investigate the effects of the non-adiabatic stratifica-
tion in the Sun’s convection zone on the HHS22 modes. A de-
viation from the adiabatic stratification is measured by the su-
peradiabaticity δ = ∇ − ∇ad where ∇ = d ln T/d ln p. The su-
peradiabaticity in the Sun’s convection zone is typically esti-
mated to be very small, δ ≈ O(10−6) (Ossendrijver 2003), except
for a very thin near-surface layer where the solar granulation is
vigorously driven by the strong surface radiative cooling (e.g.,
Nordlund et al. 2009). According to the solar standard model
S (Christensen-Dalsgaard et al. 1996; Stix 2002), δ is expected
to increase up to O(10−3) at r ≈ 0.99R⊙ and even further up to
O(10−1) at the photosphere.

In this section, we carry out a set of linear calculations with
varying superadiabaticity δ. The most realistic model 3 is used
with the turbulent viscousity of ν = 1012 cm2 s−1. We use the
following radial profiles of δ(r) which mimics a sharp transition
from the close-to-adiabatic bulk convection zone to the strongly
superadiabatic surface,

δ(r) = δcz + (δsf − δcz) exp

− (
r − rmax

dsf

)2, (2)

where δcz and δsf denote the values of superadiabaticity in the
bulk of the convection zone and near the top surface, respec-
tively. We use the values dsf = 0.015R⊙ and rmax = 0.985R⊙.
Therefore, the strong superadiabaticities are localized in a thin
layer near the top boundary of our numerical domain.

3.3.1. Impact of near-surface superadiabaticity

Figure 5a shows the linear dispersion relations of the HHS22
modes computed for different values of the near-surface supera-
diabaticity δsf . In all cases, the bulk of the convection zone (be-
low 0.95R⊙) is fixed to be purely adiabatic, i.e., δcz = 0. Within
the parameter range investigated here, the frequencies of the
HHS22 modes are shown to be almost independent of δsf .

Figure 5b compares the eigenfunctions of the m = 10 HHS22
mode from the two representative cases with δsf = 10−6 and with
δsf = 10−3. Figs. 5b–d show the eigenfunctions of radial velocity
vr, z-vorticity ζr, and entropy perturbation s1 in the equatorial
plane, respectively. The radial velocity vr is almost unchanged
being concentrated near the base of the convection zone. How-
ever, the strong entropy perturbation s1 is generated in the near-
surface superadiabatic layer as δsf increases (Fig. 5c). The buoy-
ancy force associated with this entropy perturbation drives the z-
vortical motion in this near-surface layer (Fig. 5d). Nonetheless,
it is shown that the overall structure of the mode eigenfunctions
in the bulk of the convection zone (below 0.95R⊙) is only lit-
tle affected by the inclusion of the strongly superadiabatic near-
surface layer. In fact, the surface eigenfunction of radial vorticity
ζr remains unchanged by the increase of δsf up to 10−3 (Fig. 5e).

We must note that, in the real Sun, δ is expected to further in-
crease above 0.985R⊙ up to O(10−1) near the photosphere (e.g.,
Christensen-Dalsgaard et al. 1996; Stix 2002). An inclusion of
this realistic photosphere may have a non-negligible impact on
the HHS22 modes. However, resolving this very thin surface
layer is numerically challenging and thus beyond the scope of
this paper.

3.3.2. Impact of superadiabaticity in the bulk convection zone

Next, we vary the superadiabaticity in the bulk of the convection
zone δcz within a range of ±10−6 while fixing a value for the
near-surface superadiabaticity δsf = 10−3. The radial profiles of
δ(r) used in this study are shown in Fig. 6a.

Figure 6b manifests a striking sensitivity of the dispersion
relation of the HHS22 modes to a tiny change in δcz. It is found
that, as the stratification becomes more superadiabatic (suba-
diabatic), their dispersion relation shifts towards more positive
(negative) direction in frequency, i.e., the HHS22 modes prop-
agate in a retrograde direction with slower (faster) phase speed
when δcz > 0 (< 0). This frequency shift can be understood by
considering whether the buoyancy force associated with the ra-
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Fig. 5. (a) Dispersion relations of the HHS22 modes computed for different values of superadiabaticity near the surface δsf . The bulk of the
convection zone is assumed to be adiabatic, δcz = 0. (b–e) Eigenfunctions of the m = 10 HHS22 mode computed for δsf = 10−6 (left column) and
for δsf = 10−3 (right column). Panels (b–d) show cuts of radial velocity vr (in m s−1), z-vorticity ζz (in 10−8 s−1), and entropy perturbation s1 (in
erg g−1 K−1) in the equatorial plane (along the rotational axis) seen from the north pole. The black dashed curves denote the height r = 0.95R⊙,
above which the strongly superadiabatic layer is located. (e) Mollweide projection of the radial vorticity eigenfunction ζr at the top boundary
r = 0.985R⊙ (in 10−8 s−1). All the eigenfunctions are normalized in the same way as in Fig. 2.

dial motion acts as an additional restoring force or the opposite.
The similar behavior is already reported and discussed in the
case of columnar convective (thermal Rossby) modes by Bekki
et al. (2022b, see § 5.), in which their prograde propagation fre-
quencies become slower (faster) when δ > 0 (< 0). It is shown in
Fig. 6b that the observed frequencies of the HHS22 modes can
be nicely fitted by the linear dispersion relation with weakly sub-
adiabatic bulk convection zone −5 × 10−7 ≲ δcz ≲ −2.5 × 10−7.
This is within the range of the observational constraint of δ in-
dependently derived by Gizon et al. (2021) based on the m = 1
high-latitude inertial mode.

For the range of subadiabaticity −5 × 10−7 ≲ δcz ≲ −2.5 ×
10−7, the Brunt-Väisälä frequency N =

√
g|δcz|/Hp is esti-

mated to be N/2π ≈ 240 − 340 nHz (with g ≈ 520 m s−1

and Hp ≈ 57 Mm near the base of the convection zone),
which is comparable to the mode frequencies at 8 ≤ m ≤ 14.
Therefore, the HHS22 modes are expected to behave as gravito-
inertial modes in which both Coriolis and buoyancy forces act
as restoring forces. Some gravito-inertial modes are known to
be trapped by turning surfaces (Friedlander & Siegmann 1982;
Dintrans et al. 1999; Mirouh et al. 2016). The eigenfunctions of
the m = 10 HHS22 mode are shown in Fig. 6c in the case of
δcz = −5 × 10−7. We find that the turning surfaces (denoted by
gray dashed curves) are located at higher latitudes than the crit-
ical latitudes of the differential rotation. Therefore, the turning
surfaces only play a limited role in trapping the HHS22 modes
which are already strongly confined into the equatorial region by
the critical latitudes. In the bulk of the convection zone, there-
fore, no significant difference can be seen in the mode eigen-
functions from the adiabatic case (Fig. 2c). Near the surface, by
contrast, strong z-vortical motions are apparent as a consequence
of the strong superadiabaticity.

4. Summary and Discussion

In this study, we investigated the properties of the l = m + 1 ra-
dial vorticity modes recently observed by HHS22 (we call them
HHS22 modes in this paper). We used a linear eigenmode solver
of the Sun’s convection zone developed by Bekki et al. (2022b).
Our model can successfully reproduce the previous results of
TGBR22 and BH23 when the simplifying assumptions are used.
We found that, in contrast to the classical l = m + 1 Rossby
modes, the HHS22 modes are very sensitive to the background
density stratification. This is because the HHS22 modes are es-
sentially non-toroidal. They involve substantial z-vortical motion
near the equator and the compressional β-effect plays a signif-
icant role. The Sun’s differential rotation is also found to af-
fect the HHS22 modes by introducing the viscous critical layers,
leading to a confinement of the HHS22 modes near the base of
the convection zone at large azimuthal orders m ≳ 10 (Fig. 3).

We further examined possible effects of the background su-
peradiabaticity δ on the HHS22 modes. In this study, we used
a highly-simplified radial function of δ(r) which changes from
a close-to-adiabatic value in the bulk of the convection zone
(r ≲ 0.95R⊙) to a strongly superadiabatic value near the top sur-
face (0.95R⊙ ≲ r ≤ 0.985R⊙). Surprisingly, the strong supera-
diabaticities near the top surface δsf do not affect the properties
of the HHS22 modes such as their propagation frequencies and
the radial vorticity eigenfunction at the surface (Fig. 5). In con-
trast, we found that their dispersion relation is quite sensitive to
a small variation in the bulk superadiabaticity δcz. This differ-
ence can be attributed to the fact that the radial motions of the
HHS22 modes dominantly exists in the lower convection zone
as a consequence of the mode confinement towards the base by
the differential rotation (Figs. 2c and 6c). We showed that, in or-
der to explain the observed frequencies of the HHS22 modes,
the bulk of the convection zone needs to be weakly subadiabatic,
i.e., −5 × 10−7 ≲ δcz ≲ −2.5 × 10−7. This constraint is con-
sistent with but tighter than the previous constraint derived by
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Fig. 6. (a) Radial profiles of the superadiabaticity δ(r) defined by Eq. (2) for different values of the bulk superadiabaticity δcz. The superadiabaticity
in the near-surface layer is fixed to δsf = 10−3. (b) Dispersion relations of the HHS22 modes computed for different superadiabaticity profiles as
shown in panel (a). The observed frequencies reported by HHS22 are denoted by gray diamonds. (c) Meridional eigenfunctions from the case with
weakly subadiabatic bulk convection zone (δcz = −5 × 10−7). Black solid and gray dashed curves show the locations of the critical latitudes (by
differential rotation) and the turning surfaces (by subadiabatic stratification), respectively.

Gizon et al. (2021) using the m = 1 high-latitude inertial mode
(δ < 2 × 10−7).

Our result suggests that the Sun’s bulk convection zone is
likely much less superadiabatic than typically thought and possi-
bly be even subadiabatic. This unconventional conclusion needs
to be tested by models with more realistic effects included. For
instance, we ignored the effects of magnetic field in this study,
which are known to affect the properties of the Rossby modes
(e.g., Zaqarashvili et al. 2021). Moreover, we still cannot rule out
the possibility that the above conclusion could be affected by an
inclusion of the realistic solar photosphere (above 0.985R⊙) with
a very strong superadiabaticity on the order of δ ≈ O(10−1). We
also note that the spatially uniform δ below the strongly supera-
diabatic near-surface layer might be over-simplifying. A further
parameter survey on various radial profiles of δ(r) will be re-
quired (Dey et al. in prep.).

Recent direct numerical simulations of solar convection have
reported a formation of the weakly subadiabatic layer near the
base of the convection zone as a consequence of the non-local
convective heat transport (Käpylä et al. 2017; Hotta 2017; Bekki
et al. 2017; Karak et al. 2018; Nelson et al. 2018; Hotta et al.
2022; Käpylä 2023) (see also Appendix A). Our study implies
that the HHS22 modes are likely gravito-inertial modes originat-
ing from this weakly subadiabatic lower convection zone. A fur-
ther investigation on the HHS22 modes will be desired both from

observational and theoretical perspectives to better understand
this weakly subadiabatic layer, as it might help us to explain the
Sun’s anomalously weak convective power at large spatial scales
(e.g., Hanasoge et al. 2012) and to resolve the Sun’s convective
conundrum (e.g., O’Mara et al. 2016; Hotta et al. 2023).
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Appendix A: Nonlinear simulation of solar rotating
convection

In this appendix, we report an additional analysis of the fully-
nonlinear numerical simulations of rotating convection by Bekki
et al. (2022a). We must note that these direct numerical simula-
tions tend to show several inconsistencies with the observations
regarding the profiles of the large-scale mean flows and the sur-
face velocity power spectra (e.g., Miesch et al. 2008; Hanasoge
et al. 2012). This yet-unsolved problem is known as the con-
vective conundrum (e.g., O’Mara et al. 2016; Hotta et al. 2023).
The purpose of this appendix is, therefore, not to reproduce the
observations in a self-consistent manner but only to report that
the HHS22 modes can be found in the nonlinear simulations of
Bekki et al. (2022a).

Appendix A.1: Method

We use the data from the nonlinear numerical simulations of
solar-like rotating convection carried out by Bekki et al. (2022a).
In their simulations, a full set of compressible hydrodynamic
equations are solved in a spherical shell (0.71R⊙ < r < 0.96R⊙)
rotating at the solar rotation rate. The luminosity is artificially
reduced from the solar value by a factor of 20 to achieve the
strongly rotationally-constrained regime (low Rossby number
regime) and to obtain the solar-like differential rotation with
faster equator and slower poles (e.g., Gastine et al. 2013). In
Bekki et al. (2022a), total six simulations were carried out with
the same numerical setup but with different initial random pertur-
bations. Each simulation has been evolved for more than 25 solar
years and we analyze the 15-year-long data after the large-scale
mean flows become statistically stationary. The results are av-
eraged over these six realizations to increase the signal-to-noise
ratio.

Appendix A.2: Results

Figures A.1a–c show the near-surface power spectra of the l = m
component of the longitudinal velocity vϕ, l = m + 1 component
of the latitudinal velocity vθ, and l = m + 1 component of the
radial vorticity ζr from the nonlinear simulations. The spectra
are computed within a Carrington frame. Cyan diamonds denote
the observed frequencies of the HHS22 modes (HHS22) and red
points show the linear dispersion relation from the model 3 with
the weakly subadiabatic bulk convection zone δcz = −5 × 10−7

which best-fits the observation (we will call this model 3-sub
hereafter). In the l = m spectra of vϕ and in the l = m + 1 spec-
tra of ζr, the prograde-propagating columnar convective (thermal
Rossby) modes are dominantly seen (Bekki et al. 2022a) but the
HHS22 modes are not clearly visible. On the other hand, in the
l = m+ 1 spectra of vθ, we can see a concentration of the surface
velocity power near the expected frequency range of the HHS22
modes.

Figure A.2 shows the same power spectra as Fig. A.1 but at
the fixed azimuthal order m = 10. It is shown that the columnar
convective mode has a strong power peak at ω/2π ≈ 240 nHz
with narrow linewidth of about 50 nHz which can be seen in all
the spectra (Figs. A.2a–c). In the l = m + 1 spectrum of vθ, an-
other strong power concentration is seen at around ω/2π ≈ −200
nHz aside from that of the columnar convective modes, which we
identified as a HHS22 mode. To further characterize the mode
properties, we perform a Lorentzian fit to this power spectrum as
shown by a cyan curve in Fig. A.2b. The measured peak frequen-
cies and linewidths of the HHS22 modes in the nonlinear simula-

Table A.1. Properties of the HHS22 modes in our nonlinear rotating
convection simulations for 1 ≤ m ≤ 15. The values in parenthesis
show the results from our linear eigenmode analysis from the model
3-sub (δcz = −5 × 10−7 and δsf = 10−3). The frequencies are mea-
sured in the Carrington frame. The peak frequencies and linewidths (full
widths at half maxima) are obtained by Lorentzian fits. The quantity
max(vhori) represents the maximum surface horizontal velocity ampli-
tude of the mode eigenfunction extracted from the nonlinear simulation
using singular-value-decomposition (SVD).

m
Frequency Linewidth max(vhori)

[nHz] [nHz] [m s−1]
1 -394.3 (-437.6) 90.3 (166.7) 0.4
2 -360.8 (-399.9) 104.4 (144.7) 0.8
3 -328.7 (-368.4) 161.5 (124.8) 0.7
4 -316.4 (-341.2) 133.2 (108.5) 0.4
5 -317.0 (-318.5) 128.4 (96.1) 1.9
6 -296.2 (-299.8) 133.0 (87.3) 0.7
7 -293.7 (-284.6) 111.1 (81.9) 1.9
8 -285.4 (-272.7) 121.8 (79.0) 1.0
9 -260.9 (-263.3) 156.3 (78.2) 2.1

10 -256.0 (-256.1) 205.5 (79.3) 2.3
11 -220.7 (-250.3) 225.4 (81.9) 1.1
12 -216.7 (-245.6) 237.8 (85.6) 3.2
13 -198.8 (-241.8) 158.2 (89.9) 1.3
14 -195.0 (-238.8) 181.7 (94.7) 3.4
15 -194.7 (-236.3) 151.5 (99.8) 3.5

tions are reported in Table A.1 for 1 ≤ m ≤ 15. For comparison,
we also report the values computed from the linear model 3-sub.
It is found that, in our nonlinear simulations, the HHS22 modes
have very broad linewidths of about 100 − 200 nHz, which are
about twice larger than those from the linear analysis. This sug-
gests that they are very short-lived in the nonlinear simulations.

In order to extract the spatial eigenfunctions of the HHS22
modes from the simulation data, we apply the singular-value de-
composition (SVD) method to the l = m+1 power spectrum of vθ
for each m separately. For further details on the SVD eigenmode
extraction, see Bekki et al. (2022a, § 3.2). Figure A.3 shows the
extracted velocity eigenfunctions of the HHS22 mode at m = 10.
Qualitatively, a good similarity can be confirmed in their over-
all spatial pattern of the velocity eigenfunctions with the linear
model (Figs. 2c and 6c). However, there exist slight differences
such as the small-scale noise at high latitudes and the number of
radial nodes at the equator. These can be attributed to the effects
of stochastic turbulent convection and the difference in the lati-
tudinal differential rotation profiles. In fact, the critical layers are
formed closer to the equator (and even in the middle convection
zone at high m) in the nonlinear simulations.

As reported in Table A.1, typical velocity amplitudes of the
HHS22 modes are vθ ≈ 0.5 − 3 m s−1 in the simulations, which
are much weaker than those of the columnar convective modes
but are comparable to those of the equatorial Rossby modes
(Bekki et al. 2022a). It is speculated that the HHS22 modes
are excited and damped by turbulent convection similarly to the
equatorial Rossby modes (Philidet & Gizon 2023).

Lastly, we show in Fig. A.4 the radial profile of the supera-
diabaticity δ from the nonlinear rotating convection simulation.
In the nonlinear simulation, the entropy stratification is subadi-
abatic near the base (r ≲ 0.75R⊙) and superadiabatic in the up-
per bulk of the convection zone (0.75R⊙ ≲ r ≲ 0.95R⊙). The
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Fig. A.1. Power spectra from the nonlinear rotating convection simulation of (a) the l = m component of longitudinal velocity vϕ, (b) the l = m+1
component of latitudinal velocity vθ, and (c) the l = m+1 component of radial vorticity ζr near the surface r = 0.95R⊙. The spectra are computed in
the Carrington frame. The power is normalized at each m. Cyan diamonds denote the observed frequencies of the HHS22 modes (HHS22). Orange
points show the dispersion relation of the HHS22 modes obtained from the linear calculation (model 3-sub with δcz = −5 × 10−7 and δsf = 10−3).
The power ridge associated with the columnar convective modes is denoted by black arrows.

Fig. A.2. The same power spectra as in Fig. A.1 but showing the slices
at fixed azimuthal order m = 10. The red and blue solid lines deonte the
frequencies of the m = 10 HHS22 mode obtained from the linear cal-
culation and measured by the observation, respectively. The cyan solid
curve in panel (b) shows the Lorentzian fit for the spectra around the
HHS22 mode power peak, and the green dashed line represents the fit-
ted peak frequency. The same Lorentzian fitting is also performed for
the columnar convective mode in panel (a) and shown by orange solid
curve and dashed line.

Fig. A.3. Velocity eigenfunctions of the m = 10 HHS22 mode extracted
from the fully-nonlinear rotating convection simulation using SVD.

formation of the weakly subadiabatic layer near the base is a di-
rect consequence of the non-local convective heat transport (e.g.,
Käpylä et al. 2017; Bekki et al. 2017; Karak et al. 2018). In
the nonlinear simulation of Bekki et al. (2022a), the formation
of this weakly subadiabatic layer is insignificant, leading to the
radially-averaged superadiabaticity value of δmean = 1.2 × 10−7.
However, recent magnetohydrodynamic simulations suggest that
the subadiabatic layer tends to be enhanced and extended to up-
per convection zone as the numerical resolution is increased and
the small-scale dynamo is better resolved (Hotta et al. 2022). In
the real Sun, the mean entropy stratification is expected to be
more subadiabatic than typically simulated likely because of the
very efficient small-scale dynamo effect.
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Fig. A.4. Radial profile of the superadiabaticity δ from the nonlinear
rotating convection simulation. Black solid and dashed curves denote
the area where the mean entropy stratification is superadiabatic (δ > 0)
and subadiabatic (δ < 0), respectively.
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